Planar Slab Waveguide

Maple

Three-layer Planar Slab Waveguide

Three-layer planar slab waveguide
Three-layer planar slab waveguide
To analyse planar slab optical waveguide using electromagnetic theory, the three-layer planar slab waveguide is simplified as that the electromagnetic field does not change in y-direction (y=0\frac{\partial}{\partial y}=0). Thus, we can easily get one-dimensional wave equation of EyE_y,

2Eyx2+(nj2k2β2)Ey=0,j=1,2,3\frac{\partial^2E_y}{\partial x^2}+(n_j^2k^2-\beta^2)E_y=0,\quad j=1,2,3

Where k=2π/λk=2\pi /\lambda, njn_j is refractive index of each layer. When n1>n2n3n_1>n_2\geq n_3, for guide mode, it should be the standing wave solution in core layer and attenuation solution in substrate and clad layer.

Ey={Aeδx,x0Acos(κx)+Bsin(κx),dx0eγ(x+d)[Acos(κd)+Bsin(κd)],xdE_y= \left\{ \begin{array}{lr} A\mathrm{e}^{-\delta x}, &x\geq0 \\ A\cos(\kappa x)+B\sin(\kappa x), &-d\leq x\leq 0 \\ \mathrm{e}^{\gamma(x+d)}[A\cos(\kappa d)+B\sin(\kappa d)], & x\leq -d \end{array} \right.

Where,

{κ=n12k2β2γ=β2n22k2δ=β2n32k2\left\{ \begin{array}{l} \kappa = \sqrt{n_1^2k^2-\beta^2} \\ \gamma = \sqrt{\beta^2-n_2^2k^2} \\ \delta = \sqrt{\beta^2-n_3^2k^2} \end{array} \right.

Since Hz=iωμ0EyxH_z=\frac{\mathrm{i}}{\omega \mu_0}\frac{\partial E_y}{\partial x},

Hz={(iδ/ωμ0)Aeδx,x0(iκ/ωμ0)[Asin(κx)Bcos(κx)],dx0(iγ/ωμ0)eγ(x+d)[Acos(κd)+Bsin(κd)],xdH_z= \left\{ \begin{array}{lr} -(\mathrm{i}\delta /\omega\mu_0)A\mathrm{e}^{-\delta x}, &x\geq0 \\ -(\mathrm{i}\kappa /\omega\mu_0)[A\sin(\kappa x)-B\cos(\kappa x)], &-d\leq x\leq 0 \\ -(\mathrm{i}\gamma /\omega\mu_0)\mathrm{e}^{\gamma(x+d)}[A\cos(\kappa d)+B\sin(\kappa d)], & x\leq -d \end{array} \right.

According to the continuity conditions of electromagnetic waves at interfaces x=0x=0 and x=dx=-d, for HzH_z, it should be satisfied that

{Aδ+Bκ=0A[κsin(κd)γcos(κd)]+B[κcos(κd)+γsin(κd)]=0\left\{ \begin{array}{l} A\delta+B\kappa=0 \\ A[\kappa\sin(\kappa d)-\gamma\cos(\kappa d)]+B[\kappa\cos(\kappa d)+\gamma\sin(\kappa d)]=0 \\ \end{array} \right.

For the above system of linear equations of AA and BB, if there is a non-zero solution, there must be a coefficient Determinant of 0, that is

δ[κcos(κd)+γsin(κd)]κ[κsin(κd)γcos(κd)]=0\delta[\kappa\cos(\kappa d)+\gamma\sin(\kappa d)]-\kappa[\kappa\sin(\kappa d)-\gamma\cos(\kappa d)]=0

Multi Layer Slab Waveguide

Multi layer slab waveguide
Multi layer slab waveguide
Similarly, in layer i, continue working with the TE equation,

{2Ey,i(x)x2+k02ni2Ey,i(x)=β2Ey,i(x)x(1k02ni2Hy,i(x)x)+Hy,i(x)=β2k02ni2Hy,i(x)\left\{ \begin{array}{l} \frac{\partial^2E_{y,i}(x)}{\partial x^2}+ k_0^2 n_i^2 E_{y,i}(x) = \beta^2 E_{y,i}(x)\\ \frac{\partial}{\partial x} \left( \frac{1}{ k_0^2n_i^2}\frac{ \partial H_{y,i}(x)}{\partial x} \right) + H_{y,i}(x) = \frac{\beta^2} {k_0^2 n_i^2} H_{y,i}(x) \end{array} \right.

The general solution to equation can be written as

Ey,i=Aieikx,i(xai)+Bieikx,i(xai)E_{y,i}=A_i \mathrm{e}^{\mathrm{i}k_{x,i}(x-a_i)}+B_i \mathrm{e}^{-\mathrm{i}k_{x,i}(x-a_i)}

Where kx,i=k02ni2β2k_{x,i}=\sqrt{k_0^2n_i^2-\beta^2}. Based on continuity conditions for the interface between two layers:

{Ey,i(ai)=Ey,i+1(ai)Ey,i(ai)x=Ey,i+1(ai)x\left\{ \begin{array}{l} E_{y,i}(a_i)=E_{y,i+1}(a_i)\\ \frac{ \partial E_{y,i}(a_i)}{\partial x}=\frac{ \partial E_{y,i+1}(a_i)}{\partial x} \end{array} \right.

we can derive the following matrix relation:

[AiBi]=12αi((αi+αi+1)eδi+1(αiαi+1)eδi+1(αiαi+1)eδi+1(αi+αi+1)eδi+1)[Ai+1Bi+1]\left[ \begin{array}{c} A_i \\ B_i \end{array} \right] = \frac{1}{2\alpha_i}\left( \begin{array}{cc} (\alpha_{i}+\alpha_{i+1})\mathrm{e}^{-\delta_{i+1}} & (\alpha_{i}-\alpha_{i+1})\mathrm{e}^{\delta_{i+1}} \\ (\alpha_{i}-\alpha_{i+1})\mathrm{e}^{-\delta_{i+1}} & (\alpha_{i}+\alpha_{i+1})\mathrm{e}^{\delta_{i+1}} \\ \end{array} \right) \left[ \begin{array}{c} A_{i+1} \\ B_{i+1} \end{array} \right]

By repeating this procedure for all layers, the following matrix equation can be derived:

[A1B1]=(t11(β2)t12(β2)t21(β2)t22(β2))[ANBN]\left[ \begin{array}{c} A_1 \\ B_1 \end{array} \right] = \left( \begin{array}{cc} t_{11}(\beta^2) & t_{12}(\beta^2) \\ t_{21}(\beta^2) & t_{22}(\beta^2) \end{array} \right) \left[ \begin{array}{c} A_{N} \\ B_{N} \end{array} \right]

For guided modes

limx±Ey(x)=0\lim_{x \rightarrow \pm \infty}E_y(x)=0

and because β>k0nN\beta > k_0n_N and β>k0n1\beta > k_0n_1 we can write that A1=BN=0A_1 = B_N = 0. This can only be fulfilled if t11(β2)=0t_{11}(\beta^2)=0.

Reference

  1. 高等光学仿真(MATLAB版)- 光波导,激光(第3版)
  2. Optical-field calculations for lossy multiple-layer AlxGa1−xN/InxGa1−xN laser diodes
  3. Microphotonics (ugent.be)
  • Title: Planar Slab Waveguide
  • Author: Maple
  • Created at : 2023-06-07 20:50:55
  • Updated at : 2023-06-24 11:19:34
  • Link: https://www.maple367.eu.org/Optics/planar-slab-waveguide/
  • License: This work is licensed under CC BY-NC-SA 4.0.
Comments