GPU Accelerating Computing Powered By PyTorch-DirectML On AMD Graphics Card

Maple

Environment

CPUGPUSystemPython
R7 7800X3DRX 6650XTWSL23.8.16
Linux 5.15.90.1-microsoft-standard-WSL2 x86_64conda 22.9.0

Ensure you have the latest GPU driver installed.

Install

1
2
3
4
5
6
pip install torch-directml
conda install pytorch cpuonly -c pytorch
conda install numpy pandas tensorboard matplotlib tqdm pyyaml -y
pip install opencv-python
pip install wget
pip install torchvision

Test & Benchmark

Code for test:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch
import torch_directml

torch.set_default_device(torch_directml.device(1)) # Select the second Graphics Card because device(0) is APU of R7 7800X3D

x = torch.tensor(1.2)
a1 = torch.tensor(2.3, requires_grad=True)
b1 = torch.tensor(1.3)
y1 = x * a1 + b1
a2 = torch.tensor(2.2, requires_grad=True)
b2 = torch.tensor(1.4)
y2 = y1 * a2 + b2

a3 = torch.tensor(1.1, requires_grad=True)
b3 = torch.tensor(2.2)
y3 = y2 * a3 + b3

# PyTorch autograd derivation follow chain law
dy3_dw1 = torch.autograd.grad(y3, [a1], retain_graph=True)
print(dy3_dw1[0])

# Manually derivation
dy3_dy2 = torch.autograd.grad(y3, [y2], retain_graph=True)
dy2_dy1 = torch.autograd.grad(y2, [y1], retain_graph=True)
dy1_dw1 = torch.autograd.grad(y1, [a1], retain_graph=True)
print(dy3_dy2[0] * dy2_dy1[0] * dy1_dw1[0])

Code for benchmark:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from __future__ import division
from __future__ import print_function

import os
import time

import numpy as np
import torch
import torch_directml

import matplotlib.pyplot as plt

torch.set_default_device('cpu')
gpu1 = torch_directml.device(1)

def create_path(path):
if not os.path.isdir(path):
os.makedirs(path)

def get_file_full_name(path, name):
create_path(path)
if path[-1] == "/":
full_name = path + name
else:
full_name = path + "/" + name
return full_name

def create_file(path, name, open_type='w'):
file_name = get_file_full_name(path, name)
return open(file_name, open_type)

def _plot_record(record, full_path):
_plot_cpu_gpu_time(record, full_path)
_plot_acceleration(record, full_path)

def _get_full_path(repeats, size_begin, size_end):
if not os.path.exists("./output"):
os.makedirs("./output")
path_str = "./output/%s_%s_%s" % (repeats, size_begin, size_end)
return path_str

def _plot_cpu_gpu_time(record, full_path):
float32_numpy_lt = []
float64_numpy_lt = []
float32_cpu_lt = []
float64_cpu_lt = []
float32_gpu_lt = []
float64_gpu_lt = []
steps = []
for key in record:
steps.append([key])
steps.sort()


for i in range(len(steps)):
step_dic = record[steps[i][0]]
float32_numpy_value = step_dic["float32_numpy"]
float32_numpy_lt.append(float32_numpy_value)
float64_numpy_value = step_dic["float64_numpy"]
float64_numpy_lt.append(float64_numpy_value)

float32_cpu_value = step_dic["float32_torch_cpu"]
float32_cpu_lt.append(float32_cpu_value)
float64_cpu_value = step_dic["float64_torch_cpu"]
float64_cpu_lt.append(float64_cpu_value)

float32_gpu_value = step_dic["float32_torch_gpu"]
float32_gpu_lt.append(float32_gpu_value)
float64_gpu_value = step_dic["float64_torch_gpu"]
float64_gpu_lt.append(float64_gpu_value)

float32_numpy_lt = np.array(float32_numpy_lt)
float64_numpy_lt = np.array(float64_numpy_lt)

float32_cpu_lt = np.array(float32_cpu_lt)
float64_cpu_lt = np.array(float64_cpu_lt)
float32_gpu_lt = np.array(float32_gpu_lt)
float64_gpu_lt = np.array(float64_gpu_lt)

steps = np.array(steps)
steps = steps*steps

float32_gpu_line, = plt.plot(steps, float32_gpu_lt)
float64_gpu_line, = plt.plot(steps, float64_gpu_lt)
float32_cpu_line, = plt.plot(steps, float32_cpu_lt)
float64_cpu_line, = plt.plot(steps, float64_cpu_lt)

float32_numpy_line, = plt.plot(steps, float32_numpy_lt)
float64_numpy_line, = plt.plot(steps, float64_numpy_lt)
# pylint: disable=bad-continuation

line_lt = [
float32_gpu_line,
float64_gpu_line,
float32_cpu_line,
float64_cpu_line,
float32_numpy_line,
float64_numpy_line,
]

labels_lt = (
"float32 torch gpu",
"float64 torch gpu",
"float32 torch cpu",
"float64 torch cpu",
"float32 numpy",
"float64 numpy",
)
# pylint: enable=bad-continuation
plt.legend(handles=line_lt, labels=labels_lt, loc='best')
full_path_name = "%s/cpu_gpu.jpg" % (full_path)
# plt.show()
plt.savefig(full_path_name)
plt.close()

def _plot_acceleration(record, full_path):
float64_acceleration_lt = []
float32_acceleration_lt = []
float64_np_torch_cpu_acceleration_lt = []
float32_np_torch_cpu_acceleration_lt = []
float64_np_torch_gpu_acceleration_lt = []
float32_np_torch_gpu_acceleration_lt = []

steps = []
for key in record:
steps.append([key])
steps.sort()

for i in range(len(steps)):
step_dic = record[steps[i][0]]
float64_acceleration_lt.append(step_dic["float64_torch_acceleration"])
float32_acceleration_lt.append(step_dic["float32_torch_acceleration"])

float64_np_torch_cpu_acceleration_lt.append(step_dic["float64_np_torch_cpu_acceleration"])
float32_np_torch_cpu_acceleration_lt.append(step_dic["float32_np_torch_cpu_acceleration"])

float64_np_torch_gpu_acceleration_lt.append(step_dic["float64_np_torch_gpu_acceleration"])
float32_np_torch_gpu_acceleration_lt.append(step_dic["float32_np_torch_gpu_acceleration"])

float64_acceleration_lt = np.array(float64_acceleration_lt)
float32_acceleration_lt = np.array(float32_acceleration_lt)

float64_np_torch_cpu_acceleration_lt = np.array(float64_np_torch_cpu_acceleration_lt)
float32_np_torch_cpu_acceleration_lt = np.array(float32_np_torch_cpu_acceleration_lt)

float64_np_torch_gpu_acceleration_lt = np.array(float64_np_torch_gpu_acceleration_lt)
float32_np_torch_gpu_acceleration_lt = np.array(float32_np_torch_gpu_acceleration_lt)

steps = np.array(steps)
steps = steps*steps

l1, = plt.plot(steps, float32_acceleration_lt)
l2, = plt.plot(steps, float64_acceleration_lt)

l3, = plt.plot(steps, float32_np_torch_cpu_acceleration_lt)
l4, = plt.plot(steps, float64_np_torch_cpu_acceleration_lt)

l5, = plt.plot(steps, float32_np_torch_gpu_acceleration_lt)
l6, = plt.plot(steps, float64_np_torch_gpu_acceleration_lt)
# pylint: disable=bad-continuation

line_lt = [
l1,
l2,
l3,
l4,
l5,
l6,
]


labels_lt = (
'float32 torch acceleration',
'float64 torch acceleration',
'float64 np torch cpu acceleration',
'float32 np torch cpu acceleration',
'float64 np torch gpu acceleration',
'float32 np torch gpu acceleration',
)
# pylint: enable=bad-continuation

plt.legend(handles=line_lt, labels=labels_lt, loc='best')
full_path_name = "%s/acceleration.jpg" % (full_path)
# plt.show()
plt.savefig(full_path_name)
plt.close()

def _write_status(file_obj, i, time_lt):
float32_acceleration = time_lt[1] / time_lt[3]
float64_acceleration = time_lt[0] / time_lt[2]

float64_cpu_str = "i:%s float64 cpu:%s" % (i, time_lt[0])
float32_cpu_str = "i:%s float32 cpu:%s" % (i, time_lt[1])
float64_gpu_str = "i:%s float64 gpu:%s" % (i, time_lt[2])
float32_gpu_str = "i:%s float32 gpu:%s" % (i, time_lt[3])
float64_numpy_str = "i:%s float64 numpy:%s" % (i, time_lt[4])
float32_numpy_str = "i:%s float32 numpy:%s" % (i, time_lt[5])

float32_torch_acceleration_str = "float32 torch acceleration:%s" % float32_acceleration
float64_torch_acceleration_str = "float64 torch acceleration:%s" % float64_acceleration

file_obj.write("%s\n" % float64_cpu_str)
file_obj.write("%s\n" % float32_cpu_str)
file_obj.write("%s\n" % float64_gpu_str)
file_obj.write("%s\n" % float32_gpu_str)
file_obj.write("%s\n" % float64_numpy_str)
file_obj.write("%s\n" % float32_numpy_str)
file_obj.write("%s\n" % float32_torch_acceleration_str)
file_obj.write("%s\n" % float64_torch_acceleration_str)

print(float64_cpu_str)
print(float32_cpu_str)
print(float64_gpu_str)
print(float32_gpu_str)
print(float64_numpy_str)
print(float32_numpy_str)
print(float32_torch_acceleration_str)
print(float64_torch_acceleration_str)

def _record_status(record, i, time_lt):
dic = {}
dic["float64_torch_cpu"] = time_lt[0]
dic["float32_torch_cpu"] = time_lt[1]
dic["float64_torch_gpu"] = time_lt[2]
dic["float32_torch_gpu"] = time_lt[3]
dic["float64_numpy"] = time_lt[4]
dic["float32_numpy"] = time_lt[5]

dic["float64_torch_acceleration"] = time_lt[0] / time_lt[2]
dic["float32_torch_acceleration"] = time_lt[1] / time_lt[3]

dic["float64_np_torch_cpu_acceleration"] = time_lt[4] / time_lt[0]
dic["float32_np_torch_cpu_acceleration"] = time_lt[5] / time_lt[1]

dic["float64_np_torch_gpu_acceleration"] = time_lt[4] / time_lt[2]
dic["float32_np_torch_gpu_acceleration"] = time_lt[5] / time_lt[3]

record[i] = dic

def _get_numpy_take_time(x, y, repeats, data_type):
x = np.array(x, dtype=data_type)
y = np.array(y, dtype=data_type)

t0 = time.time()
for i in range(repeats):
z = np.matmul(x, y)
t1 = time.time()
v = z.sum()

all_time = t1 - t0
avg_time = all_time / repeats
return avg_time, v

def _get_take_time(x, y, repeats, data_type, dev="cpu"):
x = torch.from_numpy(x)
x = x.type(data_type)

y = torch.from_numpy(y)
y = y.type(data_type)

if dev == "gpu":
device = gpu1
x = x.to(device)
y = y.to(device)

t0 = time.time()
for i in range(repeats):
z = torch.matmul(x, y)
t1 = time.time()

v = z.sum()
all_time = t1 - t0
avg_time = all_time / repeats
return avg_time, v.item()

def test_cpu_gpu(repeats, size_begin, size_end, step=1):
record = {}
full_path = _get_full_path(repeats, size_begin, size_end)
file_obj = create_file(full_path, "output")
for s in range(size_begin, size_end, step):
time_lt = []

x = np.random.randn(s, s)
y = np.random.randn(s, s)

float64_cpu_time, v1 = _get_take_time(x, y, repeats, torch.double, "cpu")
float32_cpu_time, v2 = _get_take_time(x, y, repeats, torch.float, "cpu")
time_lt.append(float64_cpu_time)
time_lt.append(float32_cpu_time)

float64_gpu_time, v3 = _get_take_time(x, y, repeats, torch.double, "gpu")
float32_gpu_time, v4 = _get_take_time(x, y, repeats, torch.float, "gpu")
time_lt.append(float64_gpu_time)
time_lt.append(float32_gpu_time)

float64_numpy_time, v5 = _get_numpy_take_time(x, y, repeats, np.float64)
float32_numpy_time, v6 = _get_numpy_take_time(x, y, repeats, np.float32)
time_lt.append(float64_numpy_time)
time_lt.append(float32_numpy_time)
print(v1, v2, v3, v4, v5, v6)
file_obj.write("%s %s %s %s %s %s" % (v1, v2, v3, v4, v5, v6))

_write_status(file_obj, s, time_lt)
_record_status(record, s, time_lt)

file_obj.close()
_plot_record(record, full_path)

def test_matmul(repeats, max_size, step):
for i in range(int(max_size / step)):
size_begin = 1 + i*step
size_end = (i + 1)*step
test_cpu_gpu(repeats, size_begin, size_end)

size_begin = 1
size_end = max_size
test_cpu_gpu(repeats, size_begin, size_end)

def test():
repeats = 1000
max_size = 500
step = 100
test_matmul(repeats, max_size, step)

repeats = 5
size_begin = 500
size_end = 3000
step = 5
test_cpu_gpu(repeats, size_begin, size_end, step)

repeats = 1
size_begin = 1
size_end = 10000
step = 50
test_cpu_gpu(repeats, size_begin, size_end, step)

repeats = 1
size_begin = 10000
size_end = 20000
step = 200
test_cpu_gpu(repeats, size_begin, size_end, step)

test()

Other Samples

Check out the official sample to get started.

Reference

  1. 测试pytorch 调用gpu 加速矩阵相乘. accelerate matrix multiplication_pytorch调用gpu运算 矩阵运算
  • Title: GPU Accelerating Computing Powered By PyTorch-DirectML On AMD Graphics Card
  • Author: Maple
  • Created at : 2023-07-04 19:03:52
  • Updated at : 2023-10-26 11:18:01
  • Link: https://www.maple367.eu.org/Numerical-Analysis/gpu-accelerating-computing-powered-by-pytorch-directml-on-amd-graphics-card/
  • License: This work is licensed under CC BY-NC-SA 4.0.
Comments
On this page
GPU Accelerating Computing Powered By PyTorch-DirectML On AMD Graphics Card