Three-Dimensional Coupled-Wave Theory in Photonic Crystal

Maple

Turn to CWT in PCSEL

Coupled-Wave Theory

Photonic crystal surface-emitting lasers (PCSELs) can realize one-chip, ultra-large-area, coherent semiconductor lasers. However, it is difficult to accurately evaluate the characterization of PCSELs by traditional simulation method such as FDTD or FEM etc. because of ultra-large computation. Thus, the coupled-wave theory (CWT), which is a semi-analytic computational method, is proposed by research group of Susumu Noda from Kyoto University.
The coupled-wave theory in PCSELs traces its history back to 2006 (Ref. 1), and is expanded to three dimension by incorporating the surface emission and high-order coupling effects (Ref. 2). 3D-CWT has been fully explained in the doctoral thesis of Yong LIANG (Ref. 3) and been redefined the coupled matrix by Takuya Inoue (Ref. 4).
In this post, I have changed the symbols of some formulas to avoid conflicts.

Infinite Phonic Crystal

Hermitian and non-Hermitian optical couplings inside PCSELs. a Hermitian couplings between the four fundamental waves $(R_x, S_x, R_y, S_y)$ inside a PCSEL. b Non-Hermitian couplings via radiated waves, where a backside reflector is used for the control of the non-Hermitian coupling coefficient $i/mu$.
Hermitian and non-Hermitian optical couplings inside PCSELs. a Hermitian couplings between the four fundamental waves $(R_x, S_x, R_y, S_y)$ inside a PCSEL. b Non-Hermitian couplings via radiated waves, where a backside reflector is used for the control of the non-Hermitian coupling coefficient $i/mu$.

Let us start from photonic crystal with a square lattice of air holes which are not so symmetrical in a multilayer dielectric slab. The four basic waves (RxR_x, SxS_x, RyR_y, SyS_y) which play main role in photonic crystal are in the same direction as the primitive vectors of the cell. They represent the amplitudes of waves propagating in their direction.

Theory Derivation

Consider transverse electric (TE) polarization in photonic crystal, because it is normally laser mode in MQW structure.

××E(r)=k02n~2(r)E(r)\nabla \times \nabla \times \vec{E}(\vec{r}) = k_0^2 \tilde{n}^2(\vec{r})\vec{E}(\vec{r})

Where E\vec{E}is electric field, k0k_0 is free-space wave vector, n~\tilde{n} is complex refractive index and r\vec{r}is position vector. k02n~2(r)k02n2(r)+2ik0n0(z)α~(z)k_0^2 \tilde{n}^2(\vec{r})\simeq k_0^2n^2(\vec{r})+2\mathrm{i}k_0n_0(z)\tilde{\alpha}(z), where n2(r)n^2(\vec{r}) is periodic, n0(z)n_0(z) is the average refractive index of the material at zz, and α~(z)\tilde{\alpha}(z) is gain (>0>0) or loss (<0<0) in each region.
Because photonic crystal is periodic structure, it is obvious the electric field is also periodic. By using Bloch’s theorem, E(r)=(Ex(r),Ey(r),0)\vec{E}(\vec{r})=(E_x(\vec{r}),E_y(\vec{r}),0) can be expanded as

Ej(r)=m,nEj,m,n(x,y,z)eimβ0xinβ0y, j=x,yE_j(\vec{r})=\sum_{m,n}E_{j,m,n}(x,y,z)\mathrm{e}^{-\mathrm{i}m\beta_0 x-\mathrm{i}n\beta_0 y},\ j=x,y

and n2(r)n^2(\vec{r}) can be expanded as

n2(r)=n2(z)+m,nξm,n(z)eimβ0xinβ0y, m0,n0n^2(\vec{r}) = n^2(z)+\sum_{m,n}\xi_{m,n}(z)\mathrm{e}^{-\mathrm{i}m\beta_0 x-\mathrm{i}n\beta_0 y},\ m\neq0,n\neq0

Where β0\beta_0 is propagation constant and in photonic crystal β0=2π/a\beta_0=2\pi/a (aa is lattice constant), and ξm,n(z)\xi_{m,n}(z) is the high-order Fourier coefficient term. And then, combining the above three formulas, … (See Ref. 3, page 57).
We have retained the spatial and spatial derivative terms of ExE_x and EyE_y with respect to xx and yy, so we can use them in a finite system in next section.
So, We now can obtain four basic waves in

Ex,1,0=0, Ey,1,0=Rx(x,y)Θ0(z)Ex,1,0=0, Ey,1,0=Sx(x,y)Θ0(z)Ex,0,1=Ry(x,y)Θ0(z), Ey,0,1=0Ex,0,1=Sy(x,y)Θ0(z), Ey,0,1=0\begin{aligned} E_{x,1,0}=0,\ E_{y,1,0}=R_x(x,y)\Theta_0(z) \\ E_{x,-1,0}=0,\ E_{y,-1,0}=S_x(x,y)\Theta_0(z) \\ E_{x,0,1}=R_y(x,y)\Theta_0(z),\ E_{y,0,1}=0 \\ E_{x,0,-1}=S_y(x,y)\Theta_0(z),\ E_{y,0,-1}=0 \\ \end{aligned}

Where Θ0(z)\Theta_0(z) is the field profiles in the z-direction of four basic waves, which is the same as the field profile of the fundamental guided mode for a multilayer structure with no periodic structure. The profile Θ0(z)\Theta_0(z) for basic waves can be determined by the waveguide mode profile,

2Θ0z+[ϵ0(z)k2β2]Θ0=0\frac{\partial^2\Theta_0}{\partial z}+\left[\epsilon_0(z)k^2-\beta^2\right]\Theta_0 = 0

Where β\beta is the propagation constant, which satisfies ββ0\beta \simeq \beta_0 under condition of Γ\Gamma point resonance. β\beta and Θ(z)\Theta (z) can be calculated by employing the transfer matrix method. Then, normalize Θ(z)\Theta(z) as Θ(z)2dz=1\int_{-\infty}^{\infty}|\Theta(z)|^2 \mathrm{d}z = 1.
Now, we can calculate four basic waves. Here, take RxR_x as an example. Combine them and neglected the second spatial derivative terms because of the slow variation of RxR_x compared to eiβ0x\mathrm{e}^{\mathrm{i}\beta_0x}, we can get

(ββ0)RxΘ0+2ik0n0(z)α~(z)RxΘ02iβ0RxxΘ0=k02m1,n0ξ1m,0nEy,m,n(\beta-\beta_0)R_x\Theta_0 + 2\mathrm{i}k_0n_0(z)\tilde{\alpha}(z)R_x\Theta_0-2\mathrm{i}\beta_0\frac{\partial R_x}{\partial x}\Theta_0 = -k_0^2 \sum_{m'\neq1,n'\neq0}\xi_{1-m',0-n'}E_{y,m',n'}

… (See Ref. 3, page 59). Finally, we can rewritten equations above in matrix form as

(δ+iα2)(RxSxRySy)=C(RxSxRySy)+i(Rx/xSx/xRy/ySy/y)\left( \begin{array}{c} \delta + i \frac{\alpha}{2} \end{array} \right) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) = C\left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) + \mathrm{i}\left( \begin{array}{cc} \partial{R_x}/\partial x \\ -\partial{S_x}/\partial x \\ \partial{R_y}/\partial y \\ -\partial{S_y}/\partial y \end{array} \right)

If we consider an infinite photonic crystal, derivative terms is equal to zero because of periodicity,

(δ+iα2)(RxSxRySy)=(CHermitian+CnonHermitian+CnonΓ)(RxSxRySy)\left( \begin{array}{c} \delta + i \frac{\alpha}{2} \end{array} \right) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) = (C_{Hermitian} + C_{non-Hermitian} + C_{non-\Gamma}) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right)

CHermitian=(κ11κ1Dκ2D+κ2Dκ1Dκ11κ2Dκ2D+κ2D+κ2Dκ11κ1Dκ2Dκ2D+κ1Dκ11)C_{Hermitian} = \left( \begin{array}{cccc} \kappa_{11} & \kappa_{1D} & \kappa_{2D+} & \kappa_{2D-} \\ \kappa_{1D}^{*} & \kappa_{11} & \kappa_{2D-}^{*} & \kappa_{2D+} \\ \kappa_{2D+} & \kappa_{2D-} & \kappa_{11} & \kappa_{1D} \\ \kappa_{2D-}^{*} & \kappa_{2D+} & \kappa_{1D}^{*} & \kappa_{11} \end{array} \right)

CnonHermitian=(iμiμeiθpc00iμeiθpciμ0000iμiμeiθpc00iμeiθpciμ)C_{non-Hermitian} = \left( \begin{array}{cccc} i\mu & i\mu \mathrm{e}^{i\theta_{pc}} & 0 & 0 \\ i\mu \mathrm{e}^{-i\theta_{pc}} & i\mu & 0 & 0 \\ 0 & 0 & i\mu & i\mu \mathrm{e}^{i\theta_{pc}} \\ 0 & 0 & i\mu \mathrm{e}^{-i\theta_{pc}} & i\mu \end{array} \right)

CnonΓ=(βk;1,0β00000βk;1,0β00000βk;0,1β00000βk;0,1β0)(kx0000kx0000ky0000ky)C_{non-\Gamma} = \left( \begin{array}{cccc} \beta_{k;1,0}-\beta_{0} & 0 & 0 & 0 \\ 0 & \beta_{k;-1,0}-\beta_{0} & 0 & 0 \\ 0 & 0 & \beta_{k;0,1}-\beta_{0} & 0 \\ 0 & 0 & 0 & \beta_{k;0,-1}-\beta_{0} \end{array} \right) \thicksim \left( \begin{array}{cccc} k_{x} & 0 & 0 & 0 \\ 0 & -k_{x} & 0 & 0 \\ 0 & 0 & k_{y} & 0 \\ 0 & 0 & 0 & -k_{y} \end{array} \right)

βk;m,n=(kx+mβ0)2+(ky+nβ0)2\beta_{k;m,n} = \sqrt{(k_{x}+m\beta_{0})^{2}+(k_{y}+n\beta_{0})^{2}}

Where

κi,j=ω022β0c2ξi,jΘ0(z)2dz\kappa_{i,j} = -\frac{\omega_0^2}{2\beta_0 c^2} \int \xi_{i,j} |\Theta_0 (z)|^2 \mathrm{d}z

ζp,q(r,s)=ω042β0c4PCξp,qξr,sG(z,z)Θ0(z)Θ(z)dzdz\zeta_{p,q}^{(r,s)} = -\frac{\omega_0^4}{2 \beta_0 c^4}\iint_{PC}\xi_{p,q}\xi_{-r,-s}G(z,z')\Theta_0(z')\Theta_*(z)\mathrm{d}z'\mathrm{d}z

χj,p,q(r,s)=ω022β0c2m2+n2>1ξpm,qnςj,m,n(r,s),j=x,y\chi_{j,p,q}^{(r,s)} = -\frac{\omega_0^2}{2 \beta_0 c^2} \sum_{\sqrt{m^2+n^2}>1} \xi_{p-m,q-n}\varsigma_{j,m,n}^{(r,s)},\quad j=x,y

ξm,n=1a2unitcellnpc2(r)ei(mβ0x+nβ0y)dxdy\xi_{m,n} = \frac{1}{a^2} \int_{unitcell} n_{pc}^2 (\textbf{r}) e^{i(m\beta_0x+n\beta_0y)} \mathrm{d}x \mathrm{d}y

(PCEx,m,n(z)Θ0(z)dzPCEy,m,n(z)Θ0(z)dz)=1m2+n2(nmmn)(mum,n(1,0)mum,n(1,0)num,n(0,1)num,n(0,1)nvm,n(1,0)nvm,n(1,0)mvm,n(0,1)mvm,n(0,1))(RxSxRySy)(ςx,m,n(1,0)ςx,m,n(1,0)ςx,m,n(0,1)ςx,m,n(0,1)ςy,m,n(1,0)ςy,m,n(1,0)ςy,m,n(0,1)ςy,m,n(0,1))(RxSxRySy)\begin{aligned} \left( \begin{array}{c} \int_{PC}E_{x,m,n}(z) \Theta_0^*(z)\mathrm{d}z \\ \int_{PC}E_{y,m,n}(z) \Theta_0^*(z)\mathrm{d}z \end{array} \right) & = \frac{1}{m^2+n^2} \left( \begin{array}{cc} n & m \\ -m & n \end{array} \right) \left( \begin{array}{cc} -m u_{m,n}^{(1,0)} & -mu_{m,n}^{(-1,0)} & nu_{m,n}^{(0,1)} & nu_{m,n}^{(0,-1)} \\ nv_{m,n}^{(1,0)} & nv_{m,n}^{(-1,0)} & mv_{m,n}^{(0,1)} & mv_{m,n}^{(0,-1)} \end{array} \right) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) \\ & \triangleq \left( \begin{array}{cc} \varsigma_{x,m,n}^{(1,0)} & \varsigma_{x,m,n}^{(-1,0)} & \varsigma_{x,m,n}^{(0,1)} & \varsigma_{x,m,n}^{(0,-1)} \\ \varsigma_{y,m,n}^{(1,0)} & \varsigma_{y,m,n}^{(-1,0)} & \varsigma_{y,m,n}^{(0,1)} & \varsigma_{y,m,n}^{(0,-1)} \end{array} \right) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) \end{aligned}

Where,

ω0=k0c\omega_0 = k_0 c

um,n(r,s)=k02PCξmr,ns(z)Gm,n(z,z)Θ0(z)Θ0(z)dzdzu_{m,n}^{(r,s)} = k_0^2\iint_{PC} \xi_{m-r,n-s}(z)G_{m,n}(z,z')\Theta_0(z')\Theta_0^*(z)\mathrm{d}z'\mathrm{d}z

vm,n(r,s)=PC1n02(z)ξmr,ns(z)Θ0(z)2dzv_{m,n}^{(r,s)} = -\int_{PC} \frac{1}{n_0^2(z)}\xi_{m-r,n-s}(z)|\Theta_0(z)|^2\mathrm{d}z

and when reflections between individual layers can be neglected,

Gm,n(z,z)=i2βzeiβzzzG_{m,n}(z,z') = -\frac{i}{2\beta_z}\mathrm{e}^{-i\beta_z|z-z'|}

βz=k0n0(z)\beta_z = k_0 n_0(z)

Besides,

κ1D=κ2,0χy,1,0(1,0)+Re(ζ1,0(1,0))eiθpc\kappa_{1D} = -\kappa_{2,0}-\chi_{y,1,0}^{(-1,0)}+\mathrm{Re}\left(\zeta_{1,0}^{(1,0)}\right)\mathrm{e}^{i\theta_{pc}}

κ2D+=χy,1,0(0,1)\kappa_{2D+} = -\chi_{y,1,0}^{(0,1)}

κ2D=χy,1,0(0,1)\kappa_{2D-} = \chi_{y,1,0}^{(0,-1)}

κ11=χy,1,0(1,0)+Re(ζ1,0(1,0))\kappa_{11} = \chi_{y,1,0}^{(1,0)}+\mathrm{Re}\left(\zeta_{1,0}^{(1,0)}\right)

μ=Im(ζ1,0(1,0))\mu=\mathrm{Im}\left(\zeta_{1,0}^{(1,0)}\right)

θpc=π+arg(ζ1,0(1,0))arg(ζ1,0(1,0))\theta_{pc} = \mathrm{\pi}+\mathrm{arg}\left(\zeta_{1,0}^{(-1,0)}\right)-\mathrm{arg}\left(\zeta_{1,0}^{(1,0)}\right)

In Brief

(δ+iα2)(RxSxRySy)=(CHermitian+CnonHermitian+CnonΓ)(RxSxRySy)\left( \begin{array}{c} \delta + i \frac{\alpha}{2} \end{array} \right) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) = (C_{Hermitian} + C_{non-Hermitian} + C_{non-\Gamma}) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right)

CHermitian=(κ11κ1Dκ2D+κ2Dκ1Dκ11κ2Dκ2D+κ2D+κ2Dκ11κ1Dκ2Dκ2D+κ1Dκ11)C_{Hermitian} = \left( \begin{array}{cccc} \kappa_{11} & \kappa_{1D} & \kappa_{2D+} & \kappa_{2D-} \\ \kappa_{1D}^{*} & \kappa_{11} & \kappa_{2D-}^{*} & \kappa_{2D+} \\ \kappa_{2D+} & \kappa_{2D-} & \kappa_{11} & \kappa_{1D} \\ \kappa_{2D-}^{*} & \kappa_{2D+} & \kappa_{1D}^{*} & \kappa_{11} \end{array} \right)

CnonHermitian=(iμiμeiθpc00iμeiθpciμ0000iμiμeiθpc00iμeiθpciμ)C_{non-Hermitian} = \left( \begin{array}{cccc} i\mu & i\mu \mathrm{e}^{i\theta_{pc}} & 0 & 0 \\ i\mu \mathrm{e}^{-i\theta_{pc}} & i\mu & 0 & 0 \\ 0 & 0 & i\mu & i\mu \mathrm{e}^{i\theta_{pc}} \\ 0 & 0 & i\mu \mathrm{e}^{-i\theta_{pc}} & i\mu \end{array} \right)

CnonΓ=(βk;1,0β00000βk;1,0β00000βk;0,1β00000βk;0,1β0)(kx0000kx0000ky0000ky)C_{non-\Gamma} = \left( \begin{array}{cccc} \beta_{k;1,0}-\beta_{0} & 0 & 0 & 0 \\ 0 & \beta_{k;-1,0}-\beta_{0} & 0 & 0 \\ 0 & 0 & \beta_{k;0,1}-\beta_{0} & 0 \\ 0 & 0 & 0 & \beta_{k;0,-1}-\beta_{0} \end{array} \right) \thicksim \left( \begin{array}{cccc} k_{x} & 0 & 0 & 0 \\ 0 & -k_{x} & 0 & 0 \\ 0 & 0 & k_{y} & 0 \\ 0 & 0 & 0 & -k_{y} \end{array} \right)

βk;m,n=(kx+mβ0)2+(ky+nβ0)2\beta_{k;m,n} = \sqrt{(k_{x}+m\beta_{0})^{2}+(k_{y}+n\beta_{0})^{2}}

Here, CHermitianC_{Hermitian}, CnonHermitianC_{non-Hermitian}, CnonΓC_{non-\Gamma} is only related to photonic crystal materials and structures (see Theory derivation). And by solving matrix eigenvalues we can get δ\delta and α\alpha, where δ=(β2β02)/2β0ββ0=neff(ωω0)/c\delta = (\beta^2-\beta_0^2)/2\beta_0 \simeq \beta-\beta_0=n_{eff}(\omega-\omega_0)/c. neffn_{eff} is the effective refractive index for the fundamental guided mode and α\alpha is the mode loss.

Finite Phonic Crystal

(δ+iα2)(RxSxRySy)=C(RxSxRySy)+i(Rx/xSx/xRy/ySy/y)\left( \begin{array}{c} \delta + i \frac{\alpha}{2} \end{array} \right) \left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) = C\left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) + \mathrm{i}\left( \begin{array}{cc} \partial{R_x}/\partial x \\ -\partial{S_x}/\partial x \\ \partial{R_y}/\partial y \\ -\partial{S_y}/\partial y \end{array} \right)

The equation above can be discretized using the staggered grid finite-difference method. And rewrite it in difference form

12L(δ+iα2)(Rxj+1,k+Rxj,kSxj+1,k+Sxj,kRyj,k+1+Ryj,kSyj,k+1+Syj,k)=12LC(Rxj+1,k+Rxj,kSxj+1,k+Sxj,kRyj,k+1+Ryj,kSyj,k+1+Syj,k)+iLa(Rxj+1,kRxj,kSxj+1,k+Sxj,kRyj,k+1Ryj,kSyj,k+1+Syj,k)\frac{1}{2} L\left( \begin{array}{c} \delta + i \frac{\alpha}{2} \end{array} \right) \left( \begin{array}{cc} R_x^{j+1,k}+R_x^{j,k} \\ S_x^{j+1,k}+S_x^{j,k} \\ R_y^{j,k+1}+R_y^{j,k} \\ S_y^{j,k+1}+S_y^{j,k} \end{array} \right) = \frac{1}{2} LC \left( \begin{array}{cc} R_x^{j+1,k}+R_x^{j,k} \\ S_x^{j+1,k}+S_x^{j,k} \\ R_y^{j,k+1}+R_y^{j,k} \\ S_y^{j,k+1}+S_y^{j,k} \end{array} \right) + \mathrm{i} \frac{L}{a} \left( \begin{array}{cc} R_x^{j+1,k}-R_x^{j,k} \\ -S_x^{j+1,k}+S_x^{j,k} \\ R_y^{j,k+1}-R_y^{j,k} \\ -S_y^{j,k+1}+S_y^{j,k} \end{array} \right)

Circles mean the known coupled matrix C, triangle mean the unknown field components are updated using the finite-difference scheme
Circles mean the known coupled matrix C, triangle mean the unknown field components are updated using the finite-difference scheme
The boundary condition of a finite photonic crystal (with a side length LL) can be defined as

Rx(0,y)=Sx(L,y)=Ry(x,0)=Sy(x,L)=0R_x(0, y) = S_x(L, y) = R_y(x, 0) = S_y(x, L) = 0

In Ref. 3, with the lattice constant a=295a=295 nm, and the device length L=70 μm, the laser is divided into 14 sections for which the eigenvalues (αLαL and δLδL) converge well.
Finally, if we define

Pstim=α0L(Rx2+Sx2+Ry2+Sy2)dxdyP_{stim}=\alpha\iint_0^L(|R_x|^2+|S_x|^2+|R_y|^2+|S_y|^2)\mathrm{d}x\mathrm{d}y

Pedge=0L(Rx2+Sx2)x=0,Ldy+0L(Ry2+Sy2)y=0,LdxP_{edge}=\int_0^L(|R_x|^2+|S_x|^2)|_{x=0,L}\mathrm{d}y+\int_0^L(|R_y|^2+|S_y|^2)|_{y=0,L}\mathrm{d}x

Prad=2κv.i0L(ξ1,0Rx+ξ1,0Sx2+ξ0,1Ry+ξ0,1Sy2)dxdyP_{rad}=2\kappa_{v.i}\iint_0^L(|\xi_{-1,0} R_x+\xi_{1,0} S_x|^2+|\xi_{0,-1} R_y+\xi_{0,1} S_y|^2)\mathrm{d}x\mathrm{d}y

Here, PstimP_{stim} describes the total stimulated power inside the laser structure, PedgeP_{edge} represents the power escaping from the edges of the laser cavity (i.e. the in-plane loss), and PradP_{rad} represents the radiation power emitted from the device surface. Here, κv.i={k042β0PCG(z,z)Θ0(z)Θ0(z)dzdz}\kappa_{v.i}=-\Im \{ \frac{k_0^4}{2\beta_0}\iint_{PC}G(z,z')\Theta_{0}(z')\Theta_{0}^*(z)\mathrm{d}z'\mathrm{d}z \} is closely associated with the out-of-plane coupling remains.

Time-Dependent

Consider transverse electric (TE) polarization in photonic crystal again, but this time is time-dependent:

××E(r)=1c22t2[n~2(r)E(r)]\nabla \times \nabla \times \vec{E}(\vec{r}) = -\frac{1}{c^2}\frac{\partial^2}{\partial t^2} [\tilde{n}^2(\vec{r})\vec{E}(\vec{r})]

Where cc is the speed of light in vacuum. Then, expand this equation according to Bloch’s theorem (See Ref. 5). Finally, we obtain

t(RxSxRySy)=cng[iδ+Γg(N)αin2](RxSxRySy)cng(Rx/xSx/xRy/ySy/y)γ(RxSxRySy)+cngC(RxSxRySy)+(f1f2f3f4)\begin{aligned} \frac{\partial}{\partial t}\left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) = & \frac{c}{n_g}\left[-\mathrm{i}\delta+\frac{\Gamma g(N)-\alpha_{in}}{2}\right]\left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) - \frac{c}{n_g} \left( \begin{array}{cc} \partial{R_x}/\partial x \\ -\partial{S_x}/\partial x \\ \partial{R_y}/\partial y \\ -\partial{S_y}/\partial y \end{array} \right) \\ & -\gamma\left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right) + \frac{c}{n_g}C\left( \begin{array}{cc} R_x \\ S_x \\ R_y \\ S_y \end{array} \right)+\left( \begin{array}{cc} f_1 \\ f_2 \\ f_3 \\ f_4 \end{array} \right) \end{aligned}

Where, CC is a 4 × 4 matrix that represents the direct and indirect cross-coupling of the basic waves. g(N)g(N) denotes the optical gain of the active layer, which is positive inside the gain section and negative inside the loss section (g(N)=gmax(NNtr)N+[gmax/(g0)]Ntr11+ϵUg(N)=\frac{g_{max}(N-N_{tr})}{N+[g_{max}/(-g_0)]N_{tr}}\frac{1}{1+\epsilon U}). ngn_g is the group index of the guided mode, Γ\Gamma is the optical confinement factor inside the active layer, δ\delta is the deviation from the Bragg condition due to the carrier-induced refractive index change inside the active layer (δ=δ0+2πλΓΔn\delta=\delta_0+\frac{2\pi}{\lambda}\Gamma\Delta n), αin\alpha_{in} is the material loss, γ\gamma is the rate of the refractive index change (whose effect is minor) and fif_i (ii = 1–4) is random noise due to spontaneous emission. (Ref. 6)

Conclusion

In this post, I organized the algorithm steps and briefly described the proof of 3D-CWT. However, if you need to have a detailed understanding of the derivation of CWT, Ref. 3 and Ref. 5 are sufficiently detailed. If you need the relevant code for 3D-CWT, please feel free to contact me.

Reference

  1. Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode | Applied Physics Letters | AIP Publishing
  2. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach
  3. Three-dimensional coupled-wave theory for photonic-crystal surface-emitting lasers
  4. General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation | Nature Communications
  5. Comprehensive analysis of photonic-crystal surface-emitting lasers via time-dependent three-dimensional coupled-wave theory
  6. Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation
  • Title: Three-Dimensional Coupled-Wave Theory in Photonic Crystal
  • Author: Maple
  • Created at : 2023-05-19 21:39:14
  • Updated at : 2023-11-09 00:00:00
  • Link: https://www.maple367.eu.org/Optics/Photonic-Crystal/three-dimensional-coupled-wave-theory-in-photonic-crystal/
  • License: This work is licensed under CC BY-NC-SA 4.0.
Comments